Complex cells can be found in the visual cortex, the secondary visual cortex (V2), and Brodmann area 19 (V3).
Like a simple cell, a complex cell will respond primarily to oriented edges and gratings, however it has a degree of spatial invariance. This means that its receptive field cannot be mapped into fixed excitatory and inhibitory zones. Rather, it will respond to patterns of light in a certain orientation within a large receptive field, regardless of the exact location. Some complex cells respond optimally only to movement in a certain direction.
These cells were discovered by Torsten Wiesel and David Hubel in the early 1960s. They refrained from reporting on the complex cells in (Hubel 1959) because they did not feel that they understood them well enough at the time.
The difference between the receptive fields and the characteristics of simple and complex cells is the hierarchical convergent nature of visual processing. Complex cells receive inputs from a number of simple cells. Their receptive field is therefore a summation and integration of the receptive fields of many input simple cells, although some input is directly received from the LGN.
Other studies of complex cells have been performed by Movshon et al., Emerson et al., Touryan et al. and Rust et al.
On the contrary, complex cells and complex receptive fields are defined to be "not simple." These cell's response to a stimulus cannot be predicted as simple cells can, as they have no inhibitory and excitatory areas. Summation and the inhibition idea also do not often hold. For example, a horizontal slit was presented in the experiment, and it was found that a cell responded highly to this slit. On these complex cells, as long as the slit was horizontal, it did not matter where the slit was positioned on the receptive field. With simple cells, it would be expected that there would be a higher response to a wide slit. However, the opposite effect occurred: the firing of the cell actually decreased. It was also tested for orientation of the slit. For simple cells, it would be expected that as long as the slit covers the excitatory field, the orientation should not matter. Again, the opposite occurred where even slight tilts to the slit resulted in decreased response.
Movshon et al. in 1978 tested responses from simple cells to determine if the simple model for the X cells was a good fit. They later applied the same testing to complex cells, but used the Y cell (subunit) model instead. This model stated that each subunits could respond differently, but the converted responses would be offset in time, so it would sum to a constant value. It also stated that the response of the cells could not be predicted from the receptive field on its own. Complex cells appeared to match the subunit model, but still lacked the restriction that the receptive fields are linear. This was also tested by measuring the response of a cell when the stimulus contains two bars, which would help show the properties of the receptive field subunit. What they found was that by knowing these properties of the subunits, it was possible to predict spatial frequency selectivity, as was the case for simple cells. Hence, complex cells could be modeled by the subunit model used for Y ganglion cells.
Other computational models of complex cells have been proposed by Adelson and Bergen, Heeger, Serre and Riesenhuber, Einhäuser et al., Kording et al., Merolla and Boahen, Berkes and Wiscott, Carandini, Hansard and Horaud and Lindeberg.
Simple vs. Complex Cells and Receptive Fields
Modeling Complex Cells
|
|